CONTRIBUTION TO OUR KNOWLEDGE OF THE MORPIIOLOGY AND SYSTEMATICS OF TIE POLYCTENTDAE, A FAMILY OF RIIYNCHOTA PARASITIC ON BATS.

By Dr. K. Jordan.

(With Plates XII., XIII., XIV.)

AMONG the insects entrosted to us by the authorities of the British Maseum (Natoral History) for the purpose of identification we found some forms of Polyctenidae which did not agree with any of the figures pnblished by Horvaith, Speiser, Waterhonse, and others, and necessitated, therefore, a closer research into the literature on the snbject, and a comparison of the allied species, before the supposed new forms could be considered as hitherto monnown to science. We had the good fortmue of being enabled to stndy in the British Mnsemm the types of Polyctenidae, i.e. the nomenclatorial types, contained in that institute, and which the authorities on this family had not seen, as types cannot be lent out by the British Musenm. Having once embarked upon the task of comparing the unidentified forms with the types, fignres, and descriptions, we soon found that the material of the British Museum collection, together with the specimens received by the Entomological Research Committee (Tropical Africa), placed us in such a favonrable position that we deemed it advisable, for the sake of other students of this gronp, to enter more closely mpon the subject.

The Polyctemidue are ouly known from bats in the Tropics and Subtropics of the Eastern as well as the Western Hemisphere, and appear to be very rare, The collection of the British Museun comprises only $2 ?$ specimens; but this number is rery large in comparison, as less than a dozen specimens are mentioned as being contained in other collections. This rarity is not merely apmarent, as in the case of so many other insects, lont is real, we believe. The explamation of the rarity lies in the fact that the Polyctenidue are viviparous, and produce the yonng in such a very advanced stage that the progeny most necessarily be exceediugly limited in numbers. The discovery of the method of propagation of these parasites is entirely due to the removal into balsam of some specimens from the cardboard on which-monformately-they were pasted. We bope that it will not be considered impertiuent on onr part if we draw attention to the necessity of jreserving Polyctenidue either in alcohol or mounted on a slide. As everylody who has stndied these insects knows, the mnderside offers rery important taxonomic characters. The number of segments in the rostrom, the structure of the first antennal segment, the shape of the throat-part of the head, the outlines of the sterna, and the number and position of the bristles on the under surface are in several instances far hetter (and sometimes the only sure) guides in identifying allied species than the upper surface, and it goes without saying that these organs must he compared if an attempt at classifying the species is made. Carded specimens, which only exhibit the npper surface (carrying a coat of minute lust revealed under the microscope), and, when soaked off the card, show the nuder side swothered in glue or shellac, are very distressing. We find it most convenient for all proposes if some specimens of a species are kept in alcohol and
others mounted flat in lialsam. We employ a perforated slide with a thin coverslip as a bottom on which the specimen rests, another coverslip lying on top of the specimen. This method allows the insect to be studied equally well from both sides.

The 27 specimens of the British Museum, which are now all trausferred into alcohol or mounted in balsam, represent, we think, all the speries which are known of this family.

As has already been clearly demonstrated by speiser,* the I'olyctemidae are nearly related to the Cimicidue. The agrecment in the structure of these tro families of Rhymehotu is indeed so cluse that no other place could be assigned to the Polyctenids than nearest to the bed-bugs.

Mlorphology.

Onr knowledge of the exuskeleton of these bat-parasites is mainly based on Westwonl's original figures in Thesaur. Oxon., which in beauty of drawing, as well as in tlearness of the detail necessary for the recognition of the species, far surpass everything that has leen pmblished since on this family. However, the fignres are not correct in every detail, chiefly owing to the state of preservation of the specimens, and to the fact-always an important one-that the figures were the first which illustrated the morphology of a trpe of insect nutil then monkown. The internal anatomy of the Polyrtenidue has not yet been investigated.

The most interesting features in these insects is the great modification of the head and anterior legs, which are quite different from these parts in other Thennchota, the movable luniform clipens especially being a character of the Polyctenidae uniqne in that order. This clipens is generally represented as being separated from the head ly a groove on the upper as well as the under side, Waterhouse's figure of P. spetsmap (18:9) being an exception. In this figure the nuder side of the head is drawn as heing deroid of the dividing-groove, in which the figure is quite correct. As an examination of specimens in aleohol proves, the groove is present only on the upper side, merely shiniug through beneath, the under surface of the elipens being covered by a thin membrane, which is continuons with the membrane of the heal.

In a dorsal view (Pl. XII.-NIV. figs. 1.3.5. 8. 10) the elipeus projects laterally heyond the edge of the frons, there being here a gap, between the elipens and the head which is filled mu by the apical portion of the first segment of the antenna. The hind edge of the clipens is always creseent-shaped centrally, the curve being sometimes stronger and sometimes flatter, and there is often a slight indentation at each site of the central portion of the arch. The sides of the hind margin are carved in the inverse sense, and always bear a number of bristles, which are directed abliquely upwards, the most lateral of these loristles being the longest. There is a donble ontline to the hind margin, owing to the clipens having a certain thickness and the upper edge of the margin projecting farther backward than the lower edge, so that the upper edge slightly overlaps the anterior margiu of the frons when the clipens is bent upwards. On the under side we find, near each antenua, a kind of hasp and angle connecting the elipens with the head. This consists, on the clipels, of a more or less ribbed incrassation in fan-shape, which narrows posteriorly, where it is raised and meets a corresponding elevation

[^0]on the bead. This fan (F) is not always so distinct as in onr text-fig. 1. The whole arrangement, however, appears to act also as a buffer when the clipeus is bent down too much. The movability of the clipens is very limited, as tested at alcohol specimens. The organ cannot freely be flapped up and down, but only be tilted it an obtnse angle, its halfmoon-shape and the membranons connection with the head alone wonld, under ordinary circumstances, prevent any too great upward or downward movement. But even muder exceptional pressure from front, the helmet, on account of the buffer, caunot flap so much down as to be in the way of the proboscis when the latter is stretched downward and perhaps a little forward in the act of sucking. At the lateral margin there are always four grooves whose

TEXT-MG. 1
posterior edges are more or less strongly raised in tubercle shape, each groove bearing a very thin bristle, the anterior groove generally two very small ones. Near the angle there is, as above, it long bristle. In one of the species (1 l. XIV. fig. 11. 1:) three of these bristles are replaced by short, thick, stumpy spines, and the postorior bristle is proximally broad and euds in a long point, the anterior groove, whose edges are not elcvate, bearing several minute hairs. The lateral posterior portion of the clipous is more or less excavated to allow for the reception of the first antennal segment.

The proboscis is described is consistiag of three segments, and containing fonr long bristle-like piercing organs. This statement does not appenr to have ever been modified. It is true that in speiser's figure of intermedius (1904) the proboscis is divided into fonr segments, but that is clearly due to a mistake on the part of the lithographer. As regards the number of segments, we tind that
some species have three and others four segments, the first segment heing always very short ; cf. Pl. XII.-XIV. figs. 2. 4. 6. 11. and text-fig. 1. The proboscis is rather soft, and the first and second segments, sometimes also the third, are more or less open on the anterior side, while the end-segment, which is longer than the preceding one, bears a mesial groove on that side, but does not appear to be open. The slit in the first and second segments is not covered by an upper lip, as in the Phynchota. We have moved the proboscis frecly, but filled, either ly pressure or bending, to find an orgran which might be homologons to the labrum, and we consider it possible that the so-called clipens really is homologous with the labrum. However, transverse sections may reveal the presence of a remnant of this organ. All the segments of the proboscis bear short hairs, those on the last one being fairly unmerons and more or less symmetrical in position. This segment, moreover, is provided at the apex with a number of short papillae, and its length and shape is by no means the same in the varions species.

The proboseis is carried with the tip pointing backwards, as in a bug, and there is a deep mesial groove on the head for its reception (Pl. XII. fig. … t), the raisel edges of this groove, some hairs placed on these edges, and the spines of the comb presumably preventing friction with the hairs of the host when the insect dives into the fur.

The upper side of the head is divided ints a flat or depressed central portion and the thepressed sides. The central portion is auteriorly parallel with the hind margin of the clipeas, or very nearly, and its lateral edge is more or less elevate, cariniform and continned backwards, being acompanied in adult specimens by a suture, at the onter side of which there is a row of bristles. The raised edge ol' the central area serves in most Old-Work species a distinct purpose in conmection with the lateral depression. As indiented in fig. 3 of Pl. Xll., the antenna, when at rest, lies on the upper side of the head in the groove bounded by the carina. The suture which extends, on the upper side, from the point where the lateral depression commences, corresponds most probably to the sutnre which is situated between the antenase in many other insects, sepratiug the frous from the vertex.

While in most species the head is more or less closely aplied to the prothoras (ct. P'I. XIII. and XlV. fig. 5. s. 10), there is sometimes a distinct neek between them (PI. Xll. fig. 1. 3), in the latter case the angles of the bead being more olutuse than in the former. It is very interesting to mote that the posterior angles bear a long bristle above as well as below in the species with a neek, while sueh lristles are absent in the other species. Bristles placed in this way in front of a gap or open joint are met with posteriorly on the pronotum of the l'olyctenidue and in some cases also on the sides of the elytra. They are a featnre common to many ectoparasites living in fur, and have evidently the function of warding off hairs which otherwise might get into the joints.

The dinereuce which exists in the shage of the froms and the number and position of the bristles is sufficiently apparent from our figures, and does not recuire further comment; but we shonhd like to Jraw attention to a small character which is unly present in some nearly related Old-World forms and has been overlooked. This is a row of exceedingly smatl spimes phaced on each side of the head in front of the comb (IPl. XIII. fig. 5. 8). We mention this character especially, lecanse we have here one of the very mumerons instances where apparently insignificant distinctions are surprisiugly constant outward expressions of true relationship.

As said above, the under surfice of the head is cherated at each side of the
centre, by which means the probnscis-groove is formed. The bristles placed on this central area, presmmably as a protection for the proboscis, vary much according to the splecies, and the central portion of the hind margin exhibits also considerable differences in outline in the various genera. The siles of the under surface are deeply hollowed ont, the anterior and lateral margins of the cavity loeng armed with a comb of flat, obtuse, spines. The comb varies especially in the development of the lateral spines. In some species these spines are small and do not project beyond the edge of the head (Pl. XIII. fig. 5. (i. 8), in other forms they are melh longer than the anterior spines and are visible from above (I'l. X1I. fig. 1. 2. 3. 4). The spines on each side of the proboseis-groove are usnally much nearer together at their tips than at their bases, projecting considerably over the groove. In order to allow the proboscis to pass throngh the gap between these spines the second segment of the proboscis is narrowed, which is especially noticeable in fig. $\ddot{\sim}$ and 4 of Pl. XIl. The comb is present in all the specimens, adult and immature, which we have seen, with the exception of one very yonng individual of Hesperoctenes, in which a similarly arched comb is sitnated on the first segment of the antemna instead.

The antennae are always fonr-segmented. Their length and armature and especially also the shape of the first segment afford characters of considerable taxonomic value. The variability within the limits of a species is slight as regards mature specimens. In the drawiugs hitherto pullished the insertion of the antema in the heal has not been clearly indicated. When moving the antenna of specimens preserved in alcohol, one distinctly notices that it is joinel to the lead with its posterior corner marked A in onr text-ng. I (p.55:). The first segment can easily be moved horizontally to a limited extent, but the pivot on which it works allows also some downwarl movement of the anterior margin (i.e. a slight turning of the antenna) and of the apical margin (i.e. a downward flapping of the antenna). The matnre Old-World species have the first segment provided with a median or a subapical row of blunt spines and an anterior row of smaller ones. The adult American specimens bear pointed, and more or less slender, bristles insteal. Immature specimens of the Eastern Hemisphere may have bristles only (Pl. XII. fig. 4) or spines as well (text-fig. 1), while the only yonng American specimen which we have seen has a regular carved comb of spines on this antenual segment, replacing the gular comb of the head. The second segment is always longer than either of the following two, and is more or less cylindrical in those species which carry the antenua on the apper side of the prothorax, probably when moving through the fur. In the American species and one of the Old-World forms (Pl. XIV. fig. 10. 11) the inner surface of the segment is longitadinally impressed, and there is a comb of spines at the npper edge of this groove and some loug bristles near the lower. In these species the antenna is laid along the side of the pronotnm, whose edge fits in between the comb and bristles. The apical segment is always pale at the tip and bears here some pale hairs, which presumably have a sensory function.

The upper surface of the head, thorax and elytra is always flattened iu the centre, never markedly courex, exeppting the sides, and the thorax and elytra often have a distinctly impressed mesial line. The sides of the prothorax and elytra, however, are always convex and flexed downwards. The prothorax, being laterally hollow underneath, varies in ontline to a certain extent according as the margin is more or less curved downward, which often depends on the state of preservation of the individual. One of the specimens of nycteridis, for instance, has an
asymmetrieal prothorax, only one side being curved down as nsual. The pronotum is transversely ollong in the American forms and one African species (Pl. XlV. fig. 111), or is romnded at the sides and anteriorly more or less distinctly narrowed. In all the Old-W orld species it bears anteriorly on each side a transverse row of three or fonr long bristles. It is never eveuly hairy all over, there being always some maked spaces, whose extent differs often accordiug to species. There is no comb at the hind margin in the American l'olyctenids, nor have any of our immature Old-World specimeus a pronotal comb, while all the adult examples we have seen are providel with it, one aew species (Pl. XIV. fig. 10) eren bearing a second comb of short spines with a row of long bristles in front of the hind margin. The pmetures which Speiser mentions of the two species described by him (talpe and intermedius) are present in all mature forms, but are numerons in some and less so in others.

The elytra are always fused together proximally, the slit which separates them from one another posteriorly never reaching down to the hasc ; but there is always an impressed line from the slit formard. They differ considerably in size and shape in some of the species, being transverse in the American forms and as a rule rounded together, or each separately rounded at the side and apex in the Old-World species. As in the case of the head aud pronotom, some species have a comb, others are withont it, the American never bearing a comb of spines on the upper side. The base of the elytra is concealed noderneath the overlapping hind edge of the pronotum, but is distinctly visible throngh the pronotum in specimens monnted in balsam. Immature specimens have smaller elytra than adult ones, and the apical median sinus which separates them is generally large with its extreme tip ronnded off, but there is sometimes a sutural slit in nymphs as in adults (Pl. XIlI. fig. 8).

The variety obtaining in the outlines and armature of the pronotnm and elytra is equalled if not surpassed by the diversity in the development of the thoracical sternites. There are two main lines of development in the underside of the thorax. The forms with a transverse, more or less quadrangular, pronotum have the more primitive sternal sclerites. The prosternum is triangular and does not extend in between the coxae (P l. X1Y. fig. 10), the apex of the sclerite cither being obtnse (the Africalu species figared) or more pointed (the American Polyctenids). Behind the fore coxae the enduskeleton (apophysis) is distinctly visible. In the second type, to which all the Old-World species belong with the exception of the new African species figured on Pl. XIV., the prosternum is longer, being produced into a pointed or obtuse process which cxtends iu between the fore coxae (l'l. XIl. fig. 4, XIII. fig. 6) and nearly tonches the mesusternm. This intercosal process is not essentially different in adult and immature specimens of the same species. The mesosternum is transverse in the American forms, anteriorly somewhat excised and posteriorly truncate. The metasternum is contignons with it, and resembles an abdominal sternite except in extending forward laterally to the midcoxal acetabulum. I'I. XIV. fig. 11 represents a similar type inasmuch as the metasternum is transverse, but this type differs very much in the shape of both the meso- and metasterna, the latter sclerite being small, not reaching the sides of the metasternite, and being seprated from the mesusternom by a membranos interspace. Moreover, the episternm of the metasternite, instead of being nearly sylure, as in the American Polyctenidue, is trausverse. The other species, some vecurring in Afriea and others in Asia, also have two distinct types of meso-metasterna, one of which is illustrated by text-tig. \because. Here the mesosternam (Nl_{s}) is anteriorly more or less rounded aud convex, and the sature seprating it from the metasternum is straight and lies
closely behind the mid coxae. The metastermum is anteriorly bearly as wide as the mesosternm is posteriorly, and is strongly ronded, being much broader than long. From underneath this sclerite projects an oltuse intercosal process, the mesosternum overlapping the bases of the hind cosae. The jrocess is hollow nuderneath, being a kind of half-cylinder. The remaining species conform on these selerites to Pl. XIII. fig. 6, apart from the mesostermm being much longer in some species than in the form represented by on fignre 6 . In these species the metasternum (central sclerite) is rednced to a sclerite corresponding to the iutercoxal process of textfig. 2 , there being no transverse suture immediately behind the mid coxae.

TEXT.FIG. 2.
The sterna are flat centratly and more or lens strongly slanting laterally, the sides forming nsmally a distinct angle with the centrat plave. The deejly hollow sides of the prosternite serve as a retreat for the modified fore legs, and have no hairs.

The legs, which are long and more primitive in the American forms and short and more specialised in all the Oh-World species, are different to some extent in every species, distiuctions oktaining in the number, size and position of the bristles, the number of psendo-joiuts in the tibiae and in the strncture of the tarsi. Speiser, in demonstratiug the fairly close agreement between the Polyctenes tarsus and that of Cimex, came to the conclusion that the tarsus of Polyctenes consists of three segments, of which the second is divided by a psendo-joint. We agree with this conclusion. Althongh the psendo-joint is sometimes very distinct, it is never so well defined as the joints between the trne segments. In several cases the pendo-joint is hardly iudicated (Pl. XIII. fig. 7, XIV. fig. 13). The tarsi of the immature specimens, as must be expected, have a segment less than the adnlts, the end-segment being long and umdividerl (Pl. XHI. tig. s'), the division taking place a short distance beyond the tirst segment in or near the spot where the psendu-joint of the adnlt is sitmated.

The claws vary from leing nearly alike, as in the American Polyctenids, to being very asymmetrical (Pl. XIII. fig. 7). It is always the inner claw which becomes reduced, the outer claw at the same time heing enlarged. The inuer claw is the one on the side nearest the body. As the body is broad and flat, the mid and hind legs as a rule stretch ont sideways, the fewne and tibia forming
a horizontal angle, not a vertical one, as for instance in Locusts or Carabils, this applying more especially to the hind legs. Both legs, however, can assume an oblignely upright fosition, more partienlarly in yomg specimens with small elytra and narrow ablumen and in the long-legged American l'olycteniduc. The mper surface of the horizontal hind leg of fig. Lo (Pl. XN') corresponds to the inner surfice of the Locnst leg. The small claw, in a view from alowe, therefure, lies on top of the large one. The most asymmetrical claws have the base produced into a large tooth (Pl. XIII. fig. 7), which is ouly indicated in the less asymmetrical claws (PI. XIV. fig. 13) and in the symmetrical ones. Proximally to the claws, on the ventral side, the extension-plate projects from the third segment, and near the apex of this plate there is a pair of thin bristles as in most other insects. la some species the extension-plate is supported by a projection from the segment which is triaugular in a lateral aspect (Pl. XIMI. fig. \%). In the American form and one of the African ones (Pl. XIV. fig. 13) the sole of the apical segment is armed with very stout short spines, which presumably have the function of takiug hold of the hair of the host, which is accomplished by the basal projection of the claws of the other species (Pl. XIII. fig. i), whose tarsms bears only small spines in the place where those large ones are situated. The spines are not present on both sides of the segment, but form in single row, which is placed near the onter (or under) side, i.e. the side of the larger claw.

The false segmentation of the mid and hind tibiae is most prononnced in the American forms and least developed in the remarkable African species depicted ou PI. XIV. In this latter species there is a slight indication of a division near the base and only one other psendo-joint, which is placed in the centre (mid tibia) or beyond (hind tibia). A test of the movalility of the psendo-segmented tibiae of alcohol specimens proves them to be very flexible, lat shows at the same time that the segmentation is only partial or superficial.

One of the most striking features of the Polyctenidae is the reduction which oltains in the forelegs thronghont the family, more especially in the tarsus. As in the other tarsi, the American forms are also here less modified than the Old-World species. There are always three segments to the fore tarsi of adult specimens. While, however, in the American forms there is no difficulty in finding the parts homologous to those of the other tarsi, the bristles placed at the apex of the third segment aud the claws are so modified in the species of the easterm hemisphere that it is not always easy to say which is claw and which bristle. The end-segment of the fore tarsins of an Old-World species (PI, XHI. fig. 9) bears indeed little resemblance to that of the other tarsi (Pl. N1II. fig. 7). The two claws of this segment are small and slender, and can only be distingnished from the thick bristles placed wear them by using a higher magnification, the larger of the two claws being generally carved and twisted, but sometimes obtuse.

We do not know what the function of the modified fore leg is, but we may guess at it from its structure. Three points strike us as being snggestive. The first is that the anterior femur is large, being in proportion to its leugth wider than the other femora, and carrics a considerable muscle-power, which wnst have its use. Secondly, in consefrence of the shortness of the tibia and tarsus, which muve against the femur like the hade of a clasp-kuife against the handle, the fower of the temoral muscles is rendered more ellective in a downward movement of the tibia than if the tifia and tarsi were long. Thirdly, we find in all mates at the apex of the tibia on the true ventral side a membranons lobe which bears
nmmerous thin long hairs, forming a kind of tnft (Pl. XlII. fig. 9). This organ being confined to the male, or at the most slightly indicated in the female, may le interpreted as serving a sexnal porpose. It appears therefore highly probable to us that the fore leg is ased by the male in taking hold of the other sex. But as it is reduced to the same degree in both sexes, it may have other functions as well. We do not think that it can be employed when the insect glides through the fur of the host, as the erect bristles of the tibia and tarsus wonld be a serions hindrance. As the bristles of the femm and those on the side of the tibia (Pl. XIII. fig. 6) are directed backwards, i.e. those bristles which come into contact with the hair of the host when the fore legs are tucked away underneath the hollow sides of the prothorax, we believe that the forelegs are kept in this position when the insect moves about.

Apart from the sensory hairs, the bristles of the body and appendages serve two purposes: protection and adhesion. Firstly, they obviate undue friction with the hair of the host and prevent the hairs from gettiug in between the joints ; and secondly, they render it practically impossible for the insect to slide backwards through the fur by its own weight and fall off the host. Like fleas, the Polyctenids can only move forward in the fur, the bristle being directed backward, rendering the surface smooth from the frontal side and rongh from the anal direction. Many of the long bristles, particularly the bristles of the tibiae, are semi-erect and divergent, and serve as supports for the body by resting on the hairs of the host, in the same way as by means of its numerons branchlets a broken-off twig may remain hanging in a bush. From this point of view the tibiae of the American Polyctenids are interesting, as they bear at the outer edge some exceedingly long and thin bristles, some of which equal the tibia in length.

The nmmber of abdominal segments is ten in the immature specimens and nine in the adults, the basal segment of the young apparently disappearing or fusing with the metathorax in the final instar. Apart from the greater or lesser breadth of the abdomen, the species differ as a rule in the number and length of the hairs, and in one case there is also a sexmal difference, the males lacking some of the hairs and bristles of the females.

In order to complete our short survey of the morphology we must brietly enter upon a point which is of equal importance for the systematics of the family as for phylogenetic considerations-that is, the question as to the differences between adalt and immatare speeimens.

We have examined five immatnre examples belonging to several species, and found them to agree in the following points: The proboscis has the same number of segments and essentially the same strncture as in adults of the same or allied species. The elytra are shorter, and, like the pronotum, are devoid of punctures. The bristles of the mpler and muder sides are fewer in number. The sternal sclerites are less well defined, but the prostermm is practically as in the adult, apart from the bristles. Between the metanotum, which is visible on account of the elytra not leing fully developed, and the segment which bears the first abdominal stigma there is a transerse selerite not noticeable in adults, and presumably representing the true first ablominal tergite. The tarsi consist of two or three segments, and further differ from adult tarsi in the second joint (= division hetween serments $:$ and 3) being situated close to the first in or near the place where the adnlt tarsus has a psendo-joint, the third segment being long and undivided. The upper side of the body has no combs or spines, or
only one or two, in the latter case the secoml heing placel at the apes of the elytra. The missing eomb or cumbs are represented by a row of bristles.

The first segment of the antenna of the Old-World l'olyctenidue has a smaller number of thick stumpy spines in the immature specimens we have examined than in any of our adalts, or has only hristles (PI. X11. fig. 3). The only yonng American example we have before us, however, has a comb of spines on the first antennal segment which is not present in adults of the same genns, the individnal as ar compensation lacking the gular comb. It is interesting to note that the gular comb, thongh present in our immature individuals from Asia and Africa, in these examples does not extend so far backwards at the sides of the head as in the most nearly allied adults.

These are general statements in which no eognisance is taken of the qnestion whether any of the yonng specimens belong to any of the species represented by our adult individuals, or whether they are immature forms of which the adults are not yet known. As we have to assign ab pace in chassification to each individual before us, i.c. as we have to decide whether an immature specimen belongs to one of the adults or to a separate species, we must ask what guide we have in arriving at a decision. From the above statements so much is certain, that an immature individual which is similar to an alnatt one, but exhibits some such deficiencies as are mentioned above, must not be considered a distinet species on acconnt of these deficiencies alone. Therefore, if alult and immature specimens which are obtained from the same host and in the same locality differ only in that way, one can be tolerably sure that they helong to one and the same species. As an instance we refer to the two forms represented by ligs. 1 and 3 on Pl. XH. Both specimens were found in the British Mnsenm in a jar with hats from ('hina, and one is adult (a \circ) and the other immature. The original specimens of l'olyctenes molossus which Giglioli collected on a bit at Amoy are this same species, and curiously enongh one also is immature and the other (but this time a δ) adnlt. Here, we think, there can be no doubt that the differences between the two specimens are only due to the difference iu the degree of maturity.

As in most cases the newly formed 'pidermis, with its hairs and spines, can be seen within the ohd skin of the immature examples, one must expect to meet with individuals in which the old skin has the characters of the jupal stage and the new skin those of the imago. If we are right in considering figs, 1 and 3 as depicting different stages in the metamorphosis of one species, individuals minst oceur which have no combs on the upper surtace, like fig. 3 , while beneath the skin the newly forming combs of fig. 1 are visible. Now it is a curions fact that in Westwood's figure of a non-adnlt speeimen, and in those of our immature individuals where the bristles and spines of the new skin are at all distinguishathe, the newly forming skin does not exhibit any obvions diflerences from the old one. We can only explain this fact by assuming that the young Polyctenid is born with a certain skin armature which does not essentially change at the larma monlts, the chief larval characteristics being preserved matil the later monlt. However, the stare in the life-history of the iudividual which is missiug in the collection of the British Muselua was discovered two years ago by Dr. Speiser, who receised for description as specimen from the Indian Musem, which provel to be a mymh before the final monlt. This specimen is described as haviug dorsally only one comb, which is phaced at the hint edge of the heal. But under the skin Jr. Speiser found the newly forming imago with a distinct comb on the pronotum
as well as on the elytra. Applying this discovery to the immature and adult specimens from China (figs. 1 and 3 of Pl. XII.), no dorsal combs can be expected to pot in an appearance in this species ontil the iwago is being formed in the last nymphal instar.

Since in the insects with incomplete metamorphosis the elytra are in a state of growth in the immature instars, while the head and thorax are already more or less shaped as in the imago, one might dednce from this generally applicable fact the a priori opinion that in the Polyctenids the comb of the elytra iavariably appears at a later instar thau the comb of the pronotnm. This is not the case. The specimen figured at Pl. XIII. fig. 8 , which is immature, has combs on the head and elytra, lnt not on the prothorax, and is, we think, a nymph belonging to fig. 5 , the specimens being obtained together. The specimen was unfortunately glued on a card, and the new indivilual inside the old skin is not adranced enongh to show any bristles and spiues. That is mnch to be regretted, since the appearance of a pronotal comb on the specimen forming in the nymph wonld be the best evidence that our nymph fig. 8 actually belongs to the species fig. 5 . It is interesting to note that Dr. Speiser* draws the conclnsion that the elytral comb appears before the thoracical one in the individual life, which does not seem warrauted by bis specimen of a nymph, but is borne ont by our fig. 8. It is perhaps necessary to mention that this conclusion also does not apply to those species of which the imago has a comb on the thorax but not on the elytra.

We have firther evidence of an irrefntable kind that the young differ from the adult in the absence of certain combs. The proof that this is so was accorded to us by the discovery of a young Polyctenid in the abdomen of its mother. The emlryo is mell advanced, the combs, bristles, and claws being already strongly chitinised (brown). While the mother (Pl. XIII. fig. 5) has three dorsal combs, the offispring possesses only one (on the head). Moreover, the first antemnal segment bears only one broad obtuse spine in place of the row of spines formd on this segment in the mother. If tig. 8 really is the pmain of this same species, three stages are known : the embryo, with one dorsal comb (on the head); the pupa, with two (on the head and elytra) ; and the imago, with three (on the head, pronotnm, and elytra). A less advanced embryo is contained in one of our females of another species (tulpa). \dagger

(llassification.

Systematics are primarily based on a knowledge of the characters which separate one species from the other. A classification eannot be built np merely on the distinctions exhibited by the varions specimens. We have to discriminate between these differeuces, as otherwise individnals which are different because some are immature, for instance, and others adult, or because they are of opposite sexes, might be placed widely apart from each other in the scheme of classification. In our case a classification hased, e.g., on the presence or alisence of combs would be entirely errncous. An investigation into the taxonomic meaning of the differences, therefore, is essential for the correctness of a classification as opposed to a mere arbitrary gronping of the individnals. The differences observed may be those between
(1) adult and immature individuals of the same species,
(i) the sexes,

* Rec. Ind. Mus, iii. p. 271 (1909).
\dagger These young l'olyetenirls will be described and figured in another place.
(3) individuals of the same species in the same instar,
(4) sncceeding broods,
(5) specimens of a species from different countries, or
(ii) distinct species.

The first print has been dealt with above, and some characters which distinguish the adult male from the female are also mentioned in the account of the morphology-namely, the tuft at the apex of the fore tibia in all species, and the smaller nnmber of hairs on the abdominal tergites in some-the males, moreover, hearing an organ of copulation directed, as in the bed-bug, towards the left side (in Westwood's fig. A of Pl. 39 it is erroneonsly drawn as being directed towards the right side : ef. infra, P. molossus).

We know nothing abont point (4), and as regards (3) and (5) the number of specimens known is far too small to allow ns to draw any definite conclusion as to the extent of rariation in these insects. All we can say is that the few adnlt iudividuals we have of the same sex of a species, and from the same place, agree very closely with each other, the namber and position of the bristles and the namber of spines in the combs only varying within narrow limits. For the stady of geographical variation, likewise, a far larger material is required than the collections contain at present. The $\$$ of P. molossus from China and the one from India in the British Musenm do not appear to differ.

Up to 1906 the species of Polyctenidae were dealt with nnder the one generic name Polyctenes Gigl. (1864). At that time four species (or what were thonght to he distinct species) were described from the Old World and two from the New. These Kirkaldy (1906) separated into fonr genera, the distiuctions not being taken from actnal specimens, but from the descriptions and figures of former authors, the generic names being Hesperoctenes, Polyetenes, Euroctenes, and Eoctenes. Horvith, in 1910, correctly made Euroctenes a srnonym of Polyctenes, and proposed two new genera-Ctenoplas for a species described by himself, and Synerotus for two species described by Speiser and unknown to Horvith in nature. Syncrotus being preoccupied, Horsith in 1911 proposed the name Hemischizus in its stead. In the present paper we add another new genos.

The number of species being still less than a dozen, it might be considered nonecessary to distribote them over several genera, and it requires, therefore, a few words of explanation why we follow Horvith's classification, at least to a certain extent, rather than place all the species in one genns.

Systematics are didactic, the systematist presenting either a description of facts or a reasoned interpretation of facts. This bolds good thronghout the puhlications on sustematics, with the exception of nomind indescripta, which on that ground we consiler outside the pale of the systematist. Approaching the question of genera from this point of view, it is evident that genera are not mere divisions of a family which are established for the sake of convenience, bat have an ednentional value. The diagnosis of a genns teaches us that the species grouperl together therein have certain affinities with each other (which the evolutionist calls evidence of blood-relationship) in contradistinction to the members of other genera. If, therefore, the species of a family are divided strictly according to relationship into a greater number of well-defined genera, the stndent new to the sulject, or the mould-be describer of a new species, is at once made acqnainted with the characters which are of importance for the recognition of relationship, and at the same time
is compelled to study his specimens more intrinsically, and thereby enabled to draw up a more adequate description.

Now, it is olsions that the diagnosis of a genus wonld not teach ns anything more than the diagnosis of a species, if a geuns were crected for every species. The genus should remain a division above the species: otherwise it wonld be a mere cnenmbrance. Thercfore we take it that one generic term would be sufficient in the family Polyctenillae, if the affinities between the varions species were pretty equal. But that is not the case. The American forms, of which there appear to be two, stand quite apart from all the Old-World species, and these latter again fall iuto several natural gromps, which is sufficient justification for dealing with the separate branches of the family under different generic terms. Of some of these branches we know so liar only one species, which for that reason stands isolated in the family.

A key to the genera and species will be given at the end of this revision.

1. (ienus: Polyctenes Gigl. (186t).

Antennae longae, capitis angulos hasales superantes, articulo secnudo elipei latitudine minns quam tertia parte breviore. Angulas basalis capitis non acute prodnctns, plus miunsve obtusus. Elytra apice siugulation fortissime rotundata sine ctenidio.-Genotypus: P. molossus Gigl. (180t) specim. matur. ठ.

Patria: Asia.
Polyctenes Gigl., Quart. Journ. Micr. Sci. (n.s.) iv. p. 25 (186t) (type: Molossus) ; Westw., Thrsumr. Oxon. p. 198 (1874) (partim) ; Waterh., Truns. Ent. Sor. Loud. p. 309 (1879) (partim) : id., l.c. p. 319 (1880) (partim) ; Speiser, Zool. Jahrb., Suppl. vii. p. 373 (1904) (partim ; affinity; key to the species) ; Kirkaldy, Canal. Entom. xxxviii. p. 375 (1906) (restricts Polyctenps to melussus) ; Kellogg and l'aine, Eutom. News xxi. p. 401 (1910) (verbal quot. of Kirkaldy's synopsis) ; Horv., Amn. .IVus, Nat. Hung. 573 (1910) (key to the genera; Euroctenes Kirk. syn. with Polyctenes), id., IVem. I. Congrés Intorn. Eutom. p. 251 (1911).
E゙uroctones Kirkaldy, Canad. E'ntom. xxxviii. p. 375 (19015) (type : lyrae).
Giglioli's descriptions of the genns and species read an follows :-
"Heal large and prominent, elongated, obtuse, and rounded in front : on its posterior dorsal part is a place of a nearly semicirenlar form, elged all ronad with thick spines. On the sides of the fore part of the heal are two three-jointed organs (antennae:), bent backwards. A short neck-like piece joins the head to the thorax, which is elongated and divided into two parts.
"The prothorax is donble the size of the metuthorax, and is bordered posteriorly with a line of large spines, as those on the head of the male.
"Abdomen of moderate size: it enlarges distally, and is segmented.
"Anterior legs rather short, the two following pairs rather long and slender.
"I'olyctenes molossus, Westwood and Giglioli (PI. Ib, figs. 13 and 14).-This remarkable creatnre inhabits the Chinese Molossus.
" Body of a light colour, abont $\frac{\pi}{1}$ the of an inch in length. Head rounded in front, where a well-marked elipens, of a uearly semilnnar shape, is divided off; just under its posterior angles are inserted the two antename (?) : over there insertion are five large spines on each side; these do not exist in the other specimen, which I take to be a female. Each antenna consists of three rather thick cylindroid joints, the basal one being the thickest; a few hairs fringe their inner borders, and they are bent backwarls. Do they at all correspond to the organs which have been termed palpi and maxilli in Nycteribia? The integnment of the head is finely striated;
a few hairs are scattered over it. I conld make ont nothing like eyes, and therefore suppose that these organs do not exist.
"The buccal apparatus appears well developed, and very similar to that of Nypteribia. At the back of the dorsal part of the head is a large scmilunar plate, wider than it : its anterior margin is fringed with large trmeated spines, while the posterior margin has a row of lanceolate spines; in the female this plate is rather smaller, and has anteriorly a donble row of large spines, and posteriorly an incomplete row of large hairs.
"The thorar is large, covered with hairs ; the prothorax is snh-oval, fringed posteriorly ly a line of large lanceolate spines; the prothorax of the female is more distinct, and has not the posterior line of spines. The metnthorax in the male is moch smaller than the prothorax, and ends in a point ; in the female it consists of two oval jueces.
"The abdomen is divided into nine serments in both my specimens, one of which I take to be a male; it has a broarler abdomen, with a pointed, bent, copulatory organ on the last segment. In both sexes the abdomen is covered with hairs.
"The anterior legs are short and strong, terminating in two small claws and several spines; their femore are very broad. The intermediate and posterior pairs of legs are much longer and more slender. Their tarsi terminate in two nucinated and sharp claws, with two tubercles at their base in the male, and lower down on the tarsi of the female are two more claws. I observed no rudiments of wings.
"All the insects described in this paper were collected at Amoy."
We have quoted the description verbally in orler to show that it is mainly hased on the adult specimen which bears two combs on the dorsal side. This example, therefore, is the name-type, which it is necessary to state, as there is a remote possibility that the immatnre individual represents after all a different species, the evidence from which we conclude that the two specimens are one species not lieing direct, bit circumstantial.

The prohoseis (PI. XII. fig. 2. 4) consists of four segments, of which the first is very short, the second slender and entirely open on the anterior side, the third short and also open, and the last the longest of all. The clipeus has no prominent fan-like incrassation leneath. The two halves of the gular comb are centrally close together, which accounts for the strong reduction in width of the second segment of the proboscis. The posterior spines of this comb are long and project much beyond the lateral margin of the head. The posterior edge of the head, on the dorsal side, is less closely applied to the thorax than in the other Polyctenids, especially at the sides, the angles being so slightly produced backwards that there remains a gap between the head and pronotom.

The antennae are characteristic, being essentially longer than in all the other Old-World forms, lut shorter than in the American species (Hesperoctenes), the apex of the third segment reaching a little begond the hind angle of the head. The second segment is a very little less than one-third shorter than the clipeus is wide from side to side, and bears only bristles and lairs, no short thick spines.

The elytra are fused from the base to about one-third and then separated. The apical margin being quite evenly rounded, there is a large triangular gap between them.

The prosternmm extends in between the forecosae, ending in an obtuse process whose tip is sinnate. In the mid and hind legs the tibiae have at least fonr
psendo-joints, and the second segment of the tarsi is divided in the adult by a pisendo-joint.

Oriental Region.-Only one species is known.

1. Polyctenes molossus Cigl. (1)64) (Pl. XI\}. fig. 1-4).

Ad.-Supra capite pronotoque ctenidio instrnctis ; ctenidio gulari capitis angulos basales fere attingente; segmento 1° dorsali abdominali setis longis vestito.

Tur.-Supra siue ctenidios: ctenidio gnlari ante me linm lateris termina'o : abdomine siue setis longis ; tarsis quatuor posticis triarticnlatis, articulo $3^{\text {io }}$ dunhos primis simul sumptis fere dnplo longiore; articulo 1° antenuarnm absque spinis crassis obtnsis.

Patria: China, India.
Polyctenes molossus Giglioli, 7.c. (Amoy, off Molussus) : Westw., 1.r. tab. 39. fig. A.B., tab. 40. fig. A-E (1874) (" \& " ex errore).
Pelyctenes lyrue Waterhouse, Trans. Eut, Sor. Lond. p. 311. tab. 9. fig. 1. 2 (1879) (Secunderabad, Madras Pres., off Megaderman lyra, one specimen) ; Speiser, Zonl. Julurb. Suppl. vii. p. 375
 (1909).

Eurnctenes lyvae Waterh, Kirkaldy, Canad. Ent. xxxviii. p. $375{ }^{5}$ (194hi).
The original specimens, which have not been tracel yet, reqnire re-examination. W'estwool's figures, althongh wonderfnl in execution, are obviously deficient in detail. The specimens were monuted in balsam and evidently flattened by pressure, heing rendered so transparent, according to Westwood, that "it was very difficalt to determine the precise differences hetween some portions of the dorsal and ventral surfaces of the insects."

The British Museum contains two specimens taken off a Chinese bat, one a i, the other immature, which agree with Westwood's figures, except for some detail in the proportions and in the bristles and spines. The aldult of, moreover, is identionl with the Indian of described by Waterhonse as lyrae. This lyroe has always been considered distinct from molossus on accomut of the much longer head shown in Waterhonse's figure aud some differences in the details of structure. Kirkaldy even thought the differences important enongh for separating lyrae and molossus generically. However, in the nriginal figure of lyrae the propurtions are not quite correct. We have measured the type of lyrae noder the microscope, the specimen now being taken off the card and made accessible for minnte study by being mounted in balsam. The measnrements as well as the combs and bristles are the same as in the Chinese 9 , of which PI. X11. fig. 1 and 2 are fairly correct representations, we think.

As regards the original figures of the adult specimen of molossus, they ditfer from the specimens of lyrae chiefly in the following points: The first segment of the antenna lacks the short spines which in lyrue (P'l. XII. fig. 2) are placed near the anterior edge. The sides of the pronotnm are almost evenly rounded, the prothorax being willest before the centre instead of behind it. The sntural gap between the elytra is much smaller, and the suture itself is drawn as extending to the base.

As the prothorax is hollow underneath, the sides being turned downward, it hecomes considerably wider anteriorly if pressure is applied. This was undonhtedly the case in the type of molossus. We mention further on a specimen of Eoctenes nycteridis in which one side of the pronotum is widest before the middle
and the other behind, the one side heing less flexed domuward than the other. The absence of the anterior short spines from the underside of the first antennal segment may le attribnted to an error of omission, and the undne lengtb of the biack line which represents the suture of the elytra is doubtless owing to heing drawn diagrammatically.

There are also nomerons diserepancies hetween the specimens of lyrue and the fignres of molossus in the nomber of hristles; lant here again the fignre is decidedly diagrammatical, especially as regards the antennae, thoras, elytra and legs. However, some of the differences mar he sexnal, Westwod's figure representing a δ and ours a \circ. The ronuluess of the head, especially the appareut absence of slightly projecting basal angles (et. onr fig. I ou PI. XIl.) and great width of the abdomen, way be explained by the artificial flattening of the speeimen, and the organ of copmlation heing directed towards the right sile insteal of tomards the left by assuming that the upperside (Westwool's fig, A) was drawn by viewing the transparent specimen from beneath. Westwood erroneonsly considered this organ an ovipositor and for that reason regarded the individnal as a \circ, treating the second, immature, specimen as being perhaps the δ. The fignre of this second specimen differs from the individual we fignre at Pl. XlI. figs. 3 and 4 in the obvionsly broaler head and pronotnm, which may be explained as in the case of the adnlts. The differences in the hairs can hardly be considered of any weight. Judging from the antenuae, e.y., as drawn by Westwool, it is evident to ns that the figures were not meant to be faithful reproductions of all the minnte detail.

Under the skin of onr immature specimen the new skin can be seen, the gnlar comb and the bristles being quite plain. The new skin bears again rows of bristles at the lind margins of the head and pronotum, not combs of spines.

All the evidence points to this immature Polycteries being a yomg example of molossus, the differences from the adult being such as one wonld expect to obtain between the imago and an earlier instar. The specimen would have had to mulergo at least two more monlts before turning into an imago. It is mnch danaged at the legs and many of the bristles are broken.

For the sake of brevity we abstain from describing those parts which are represented by our fignres.

Adult female (Pl. XII. fig. 1. :̈).--The first and second abdominal tergites hear an irregnlar row of short bristles, the row being dombled or trebled towards the sides; along the apical margin there is also a row of longer bristles, which abont equal in length a segment and are directed ohliquely inward. These long bristles are absent from the other tergites, on which the short bristles, however, are more numerons than on the first and second, forming centrally two or three irregnlar ruws. Tergites iii to vi, moreover, have an apical row of brist les separated trom the others and medianly widely interrupted. The bristles on the nuder surfuce of the abdomen are exeeedingly abondant, densely eovering the whole surface.

The prosternmm resembles that of the immatnre specimen (Pl. Xll. fig. 4), but the hairs are rather more numerons. The meso- and metasterua, whose outline is represented by text-fig : $(1$. 561), are nearly evealy studded with bristles.

The mid femur bears on the under side fiur or five and the hind femur three or four long bristles which are about as long as the femur is broal (in a dorso-ventral direction) a short distance from the aper. The himd tihia has abont ten psendo joints. The mid and himi tarsi consist of three segments, but the second is halved by a peudo-joint. The claws are very dissimilar, the large one
bearing a very large basal tooth and the small one being merely ronnded-dilated at the hase. In the fore tarsus the claws are placed close together as in the other tarsi, and ventrally to them there are five bristles, four being short and obtuse and the fifth long, pointed and twistel. There is a patch of short hair at the apex of the fore tibia (7), which corresponds to the male-tuft of other species.

Immature specimen (Pl. Xll. fig. 3. 4).-The abdomen has far fewer loristles than in the adult female, ibove as well as beneath, and the froximal tergites have no particularly long ones. The suture which in text-fig. :2 separates the meso- from the metasternm is only slightly indicated, and the intercoxal metasternal process is broal at the apex and much less chitinised. The fore tarsus consists of only two distinct segments instead of three. and the longest bristles among those which are placed ventrally of the claws is straight, not twisted. The mid tarsns (only one is preserved, the hind tarsi also being missiug) has three segments, the third being twice as long as the first two together.

The British Museum collection contains:
1 of adnlt (type of lyrae) from Secumderabad, India, taken off Megaderma lyru.
1 of adnlt from China, taken off a hat in the Brit. Mns.
1 immature from China, taken off a bat in the Brit. Mus.
The last two examples were apparently fonnd on the same specimen of bat.
Specimens in other collections:
The whereabouts of the two original examples from Amoy (is δ and an immature specimen) are not at present known.

2. Genus: Eoctenes Kirk. (1906).

Antennae breves, capitis angulos basales acutos non attingentes.-Genotypus : E. spasmae Waterh. (1879).

Polyctenes Gigl., Waterbouse (nee Giglioli, err. det.), Trons. Ent. Sioc. Lond. p. 312 (1879).
Encteups Kirkaldy, Cunad. Eut. xxxviii, p. 375 (1906) (type : spusmai).
Ctemoplux Horváth, Am. Mus. Vat. Mung. viii. p. 572 (1910) (type: nycteridi*).
Symerotus Horváth, l.c. p. 573 (1910) (type: tulpue).
Memischizus Hovárth, l.c. ix. p. 336 (1911) (nom. nov. loco Syncruhi preacc.).
The three species which are here united can easily be distinguished from Polyctenes by the short antennae (cf. Pl. XIII. fig. 5. 8). The head is widest at the base and closely applied to the thorax, gradnally narrowing forward. In front of its dorsal comb there is at each side a transverse row of very minte spines. The two oblifue rows of dorsal bristles remain widely apart, instead of nearly mniting behind as in Polyctenes. The basal angles are pointed, being directed backward and not bearing a long bristle on the upper side. The adnlt specimens have three dorsal combs. The posterior spines of the gnlar comb do not project (or exceedingly little) beyoud the lateral margin of the head.

The species fall into two natural groups, one corresponding to Eoctenes $(=$ Syncrotus $=$ Hemischizus $)$, the other to Ctenoplax. But as the one group consists of only one species, and the other of two which are so closely allied that they may even turn out to be geographical representatives of each other, further discoveries should be awaited before the species are separated generically.

1. Proboscis with four segments; intercosal process of prosternnm morn or less pointed.-suasmae and intermertius.
2. Prohoscis with three segments; intercosal process of prosternmm obtnse, with tip distinctly emarginate.-nycteridis.

1. Eoctenes spasmae Witterlı. (1-:9).

Ad.-Rostro quadriarticulato ; ctenidio gnlari ad angulos capitis nisque extenso prosterno angnsto precessu intercoxali tenui acuminato; supra tribus ctenidios; abdominis segmentis $5^{\circ}-7^{\circ}(\neq)$ vel fio et $7^{\prime \prime}\left(\delta^{\circ}\right)$ serie setarnm longarmm restitis; ungni minore tarsornm quatnor posticorm absque dente maguo hasali.

Ine-Rostro et prosterno ut in maturis speciminibns; ctenidio gulari abbreviato ; pronoto et elytris siue ctenidiis, illo ante medium latiore fuam post medium.

Patria : Sumatra: Nias; Java.
 Megadermat spesma, two specimens) : Speiser, Zool. J/llıl., suppl. vii. p. 375 (1904).
Polyctenes talpa Speiser, Zonl. Auziig. p. 613. text-fig. (189s) (Nias, off Me!fud, rum spusma three specimens) ; id., Zmol. Iuhrb., Suppl. vii. p. 376. tab. 20. fig. 3. 4 (1904) : id., Ror. /ut, Ilus.
iii. p. 272 (1909) (Trivandrum, off ('gmotertıs margitratus, one nymph).

Symerotus talpa Speis., Horvith, Amn. Wus. Nat. Hung. viii. p. 573 (19111).
The British Mnsemm contains two specimens of spusmae from Jara and two Sumatran examples (69) of talpa. The former are immature, and differ sn remarkably from talpa that the anthor of the latter was perfectly justified at the time in believing talpa to be distinct from spasmaf. However, a comparison of the $t w o$ forms revealed to ns so many points of agreement that the discrepancies dwindled down to distinctions which were no greater than those between the matnre and immature P. molossus. Any donhts, howerer, we might still have entertained abont the specific identity of spesmue and tulpu were set at rest ly the description given by Dr. Speiser of a nymph from South India which was devoid of combs on the pronotum and elytra, but exhibited these combs under the skin on the newly forming imago. Although this Iadian specimen may not actnally he the same species as spusmae, or may be a different geographical race approaching intermerlius from Egypt, so much is certaiu, that it effices the main difference between the immatnre spusmate and adnt tulpu.

Onr adult of of spresmae ($=$ talpa) coutains two embryos, in one of whieh the dorsal comb of the head ie alreaty develned, no other combs being distingnishable.

Athult specimens.-The figures giveu by Speiser, l.c., and which represent a \& are good, giving sufficient and correct detail for the recoguition of the species. Only the posterior margin of the pronotnm and elytra are not curved enongb in the figures, the lateral angles of the elytra particularly being firr too distinct. The shading of the fignre, moreover, gives the pronotnm and elytra the appearance of being convex in the centre, while in our specimens the central depression on the mpper side of the head is extended over the pronotum, and the sutural slit of the elytra is continued to the base by a distinct median groove.

The clipens is longer than in Polyetenes molossus, and its posterior central excision narrower and less evenly rounded. The ventral fans are very prominent and the lateral tuhercles rather strongly elevate. The second segment of the rostrmu is as long as, but distinctly wider than the third, the fourth being widest about the centre and somewhat shorter than the secoud and third together. The gnlar comb extends close to the basal angles of the head, and between it and the first antemal segment there is a row of three or four short, stumpy spines.

The prosternum is narrower than in Polyctenes molossus, the sides being strongly slanting and the intercosal process long, strongly chitinised, pointed, and slender. The meso- and metasterna are nearly the same shape as in Pl. Xlll. fig. 6 , but the mesosternum is rather longer. The metasternite has a peculiar character not fomd in other species, the plema heing produced laterad into a pramidal process which extends above the hind edge of the mid coxa.

The proximal abdominal tergites bear one regular row of bristles at some distance from the apical margin, the row becoming irregular and doubled or trebled at the sides; the fourth and following segments also have centrally but oue row in the δ, the row being irregularly dubled in the of, which sex has also more mumerons bristles laterally than the δ; the segments v , vi, and vii in the of and vi and vii in the of have an apical row of long bristles, by which this species is rasily distingnished from the next. The apex of the fore tarsins is characteristic, bearing five long bristles at the tip. The two central ones of them are evenly curved, being nearly of equal length and slightly widened at their tip. Above them is a long bristle and below them a shorter one, and towards the outer side is placed the pair of claws, the longer claw being longer thatu any of the bristles, curved and then reenrved, and terminating in a long thin point. The smaller claw of the other tarsi is slenderer thau in Polyetenes molossus.

The fore tibia of our δ is so placed that the brush of hairs at its apex ean distinetly be recognised as being a membranons flap which luens hairs on the ubder surfuce ouly, i.e. on the side away from the tarsus.

Immature specimens.-Waterhonse's figures, l.c., are very characteristic ontline drawings of the head, thorax, and base of the abdomen, the armature of the first antenal segment also being correctly represented, as far ans corrcetness can be expected from a representation on a small scale. But as hardly any further details are given in the original description, we have taken some supplementary notes from the type of spasmae and the cotype. The first antennal segment bears on the upper side a subapical row ot tive short bristles, of which the three outer ones are thin and the two lower ones thick. The npper surfaces of the second and third segments bear numerons bristles, two on the second and one on the third being long. On the nuder side the bristles are fewer in number. The second segment has here two longitudinal rows of four or five, those of the inner row being the thicker, there being also fonr or five small ipical bristles. On the third segment the imer sow is represented by three bristles and the onter ly one.

The prohoscis, clipens, and the apex of the fore tarsus are almost exactly as in the adult.

The gular comb contains eighteen spines iu each half, and does not nearly reach to the basal angles of the head. There is one small bristle behind the comb, another on a level with the last-but-one spine, a larger one betore the basal angle, and a small one at the tip of the angle. In frout of the comb, between it and the first segment of the antenab, there is one bristle. There are six small but rather stout bristles before the central portion of the hind margin, and one on each side a short distance forward. At the sides of the central channel we find only one exceedingly small hair.

The pronotnm is broader than long ($6: 5$) and widest before the centre. The greater proportion of the surface is bare of bristles, which are almost confined to the lateral area, base, and apical margin.

The elytra are small, and do not cover the metanotmu. They bear bristes
only at and near the margins, four lateral ones on each elytrum being long. Neither the pronotum nor the elytra Lave a comb of spines.

The prosternom has a less pointed and less strongly chitinised intercosal process thau in the aulult, but this process nevertheless differs, as in the adnlt, from that of l^{\prime}. molossuls and l^{\prime}. nycteridis in its tip being ronnded-poiated, not siunate. The elesate central area of the meso-metasterna is elongateovate, and does not bear more than twenty-five bristles. of which, on each side, one near the base, and another near the mid coxa are long. The metapleura are not prodnced laterad into a process as in the adult.

The fore tarsus cousists of two segments. The mid and hiud tibiae have seven or eight false articulations. The mid and hind tarsi are slender, and have three segments.

The abdominal tergites bear one row of bristles, there being bardly any additional bristles at the sides. One lateral bristle on each segment is long and strong ; the seventh segment has altogether fum, and the eighth eight lung apical bristles.

The bristles and spines on the newly forming skin are visible under the old one, hat do not differ. The aymph, however, described by Speiser, l.c., exhilited the pronotal aud elytral combs of the imago under its skin.

The British Musenm collection contains :
\because immatore specimens (one of them type of spasmae) from Java, off Meyaderma spasma.
1δ and 1 \& from Sumatra, off Megaderma lyra.
In other collections:
1 nymph (armature of imago visible) in the Indian Musenm, Calcutta, from Trisandram, off Cymopterus marginatus.
\because specimens (8 黾 ") in Zool. Iustitute at Güttingen and I in coll. Speiser, from Nias, ofi Megaderma spasma.

2. Eoctenes intermedius Speis. (1904) (Pl. XIII. fig. 9).

E. spasmate similis, elytris multo brevioribus, abdomine segmentis posticis absque setis longis seriatis.

Patria: Aegyptus ; sudam.
I'olyctenes intermedius speiser, Zool. Juhob. Suppl. vii. p. 373. tab. 20. fig. 1. 2 (1904) (Egypt, off Tiphozores perforutus, 2 specimens).
 $\because \delta \delta$ and 1 \&).
Only adult specimens are known.
The original specimens of intermedius, a male and a female, are in the collection of the Königl. Zool. Musenm at Königsberg. Thanks to the kind services of Dr. A. Dampf, we have been enabled to compare them with the examples from the Sudan (Khartum) in the British Musenm oltained by the Entomological Researeh Committee (Tropical Africa). Three of the five Sulanese specimens were, by an oversight, sent with Mallophaga to Professor Kellogg, who deseribed them as a new species, not being aware of the earlier publication of an Egyptian Pulyctenid. A o and the one o have been returned ly hin marked "type." The sudanese examples agree perfectly with the pair of intermedius; the name eknumius, thereture, is a syonym.

The figures of intermerlius and cknomius do not innite agree. This is partly due to Speiser's fignres being taken from a q, while Kellogg and Paine figure a ${ }^{\circ}$. Morcover, there are several fairly obvions inacturacies in the drawings. In Pame's figure, eg., the promotum is two broal anteriorly, while in Speiser's drawing the elytra are ton wile, laterally too evenly rounded, and apically too straight. The sutural slit is continued to the base as a distinctly impressed linear groove in the specimens, but not in Speiser's figure.

The similarity in the detail of structure between intermedins and sposmae (adult) is very close. But, hesides the much shorter elytra, intermedius is easily recognised by the posterior abdominal tergites not bearing a row of loug bristles at the apex.

The male has only oue row of bristles on the abdominal tergites, apart from the additional lateral bristles, while the female has two or three rows and bears in addition two very long bristles on the sixth and seventh segments, one being placed on each sicle at some distance from the centre.

The prosternm has the same sbape as in E. spasmae, the anterior margin being rounded in the centre (within the excision) and the iutercosal process being long, narrow, pointed, and strongly chitinised.

The British Museum collection contains :
3 oठ (among them the type of elinomius) and one f, receisal by the Entomological Research Committee (Tropical Africa), from Harold H. King, who found the specimens on a hat at Khartum on September 3, 1909.

Specimens in other collections:
$1 \sigma^{\pi}$ from the same source in the collection of Professor Kellogg ;
1δ and 1 of the Königl. Zoologische Musenm of the University of Königsberg, from Eyypt, off Taphorous perforutus.

3. Eoctenes nycteridis Horv. (1910) (Pl. XIIL. fig. ј-8).

Ad. et iuc.-Rostro triarticnlato, articnlo apicali duobus primis mnlto longiore; prosterni processu intercosali apice param sinuato obtuso ; tarsorm quatnor posticurnon anguibus basi dente magno instructis.

Patria: Africa orient. Germanica; Uganda.
Ctenomlax mycteridis Horváth, .1m. Mus. Nat. Hung. viii. p. 572. tab. 14. figs. 2. 3. 4 (1910) (Shirati, Victoria Nyanza, off Nycteris hispida, one specimen).
The artist who drew Horrailh's figures did not consult the specimen very closely, as is quite evident from the upper and ander sides ol the prothorax and from the bind tarsus, which latter is not a Polyctenid tarsus at all. For this reason we consider the four of from Uganda which are in the British Musenm to belong to nycteridis in spite of all the differences from those figures.* Horvith's specimen is donbtless also a 9 . The proboscis is drawn as consisting of four segments (a small basal oue and three others), which we attribute to an oversight on the part of the artist; and the claws in the eularged drawing of the fore tarsiss are certainly quite wrong. The following description is taken entirely from the British Musenm specimens.

Adult specimens.-We know only the \& sex. There are three dorsal combs as in the adult examples of the preceling species of Eactenes. The bristles on the

[^1]head and thorax are distributed as shown in our figures (Pl. XIII. fig. 5. 6). Those on the abdominal tergites are very ummerons, representing three or fon rows in the centre, while the sides are covered with bristles from near the base to near the apex. The pmsterior bristles of the seventh tergite are more distinctly prolonged than the corresponding bristles of the previons segments, but are less than donble the length of the other bristles. The δ must be expected to have fewer bristles.

The proboscis (Pl. XIII. tig. (6) consists of three segments, the apical one being longer than the first and second together. All the tarsi have three segments. We give an enlarged drawing of ther right hind farsus (Pl. XIII. fig. 7), which shows the characteristics of the claws very well. The small claw of nycteridis has a large basal tooth, which is but vestigial in the previous two species. It will be further noticed that the pseudo-articulation of the second segment is only indicated on the dorsal side of the segment and is placed much nearer the apex than the base. In this all the forms of Eoctenes differ from Polyctenes, in which the pseado-joint is distinct ail ronnd the tarsus and has a more proximal position. The larger proportion of the inner surfaces of the mid and hind femora is devoid of bristles.

Immature specimen (P]. XIII. fig. © ; text-fig. 1).-A single immatnre specimen was obtained together with the adnlt females. It differs in many points from the adults, the most striking being the absence of the pronotal conb, the shortness of the pronot nm, the different shape of the elytra, and the lesser mumber of bristles. The most interesting parts of the example are the elytra, which, unlike all the other immature Polyctenids which we have seen, have a narrow sutural slit, like adults, and a comb. As one of the females contains an embryo in which only the first comb is developed (besides the gular one), the dorsal combs appear in nycteridis in the iudividual life in this succession : first, third, second. The immature specimen has apparently moulted quite recently, no new bristles or spines being as yet visible under the skiu. The tarsi consist of two segments, the second segment learing near the base an incomplete additional articulation (Pl. XIII. fig. 8). The hasal tooth of the smaller claw is not nearly so large as in the adult.

The British Musemm collection contains:
4 of and 1 immature specimen, taken off a hat on the Moflat Road, Entebbe, Lganda, by Mir. E. Degin.

In other collections :
1 of in the National Hungarian Mnsenm at Mudapest, from Shirati, on the east shore of Lake Victoria, otl Nigeteris hispideda.

3. Genus : Adroctenes gen. nov.

Latus, chipeo ad latera spinis crassis loco setarum iustructo; rostro quadriarticulato articulo penultimo brevi; antennis capitis basin attingentibus hand superautibus, articulo secundo ctenidio longitulinali armato ; pronoto valde transversn; prosterno late triangulari sine processu iutercosali ; pedibns puatuor pusticis brevibns, tarsornm articulo apicali ctenidio ventrali armato, unguibs basi hand distincte dentatis.-Genotypus: A. horcathi mpec. nov.

The species for which we erect this genus is so different from all the other Pulycteuids that a generic separation is amply justified.

Adroctencs agrees with the American genns Mesperoctenes in the second acement of the antena bearing a comb, in the pronotmen being transverse and

(5\%)

closely applied to the head, in the small size of the basal projection of the tarsal claws, the presence of a comb on the under side of the last mid and hind tarsal segment, and in the shortness of the prosternum. On the other hand, its short legs and the dorsal combs are Old-World characters. The new genns, therefore, forms a kind of connecting link between the Eastern and Western Polyctenids.

The tibiac are very remarkable for having ouly a single pseudo-joint.

1. Adroctenes horvathi spec. nov. (Pl. XIV. fig. 10-13).

․ Deusissime setosus; capite pronotoque ctenidio armatis ; ante pronoti basin serie setarum longarum atque spinarum brevium ; elytris rotnadatis; abdomine segmentis 7° et 8° serie setarum longarum instructo; tarsis latitudine femoris parnm brevioribns.-Long. 3.5 mm .

Patria : Terra Somalorum, Africa orientalis septentrionalis.
A broad and very hairy species, of which the Entomological Research Committee (Tropical Africa), only received one specimen, an adnlt female, and which we have great pleasure in naming alter the distingnished Hemipterist Dr. Horvaith. The clipens is about five times as broad as it is long, its diameter being shorter in the centre than at the sides. The hind margin is more strougly arched in the centre than the anterior margin and bears laterally a row of ten bristles. The lateral bristles on the nader side of the clipeus differ remarkably from those of the other Polyctenids, the three central ones being modified into short stont spines (PI. XIV. fig. 12), and the last proximally incrassate and distally thin, while the first is represented by several minute hairs.

The bead exclusive of the clipens is shorter than broad (proportions is: i), and its npper surface, with the exception of the anterior portion of the central area, is very densely covered with short and stout but very sharply pointed bristles. The oblique sutures are very distinct and nearly straight. They are accompanied on the outer side by a row of short bristles, laterally to which there is a naked stripe. The spines of the comb at the posterior margin are longer than the bristles placed nearest to them, and twice as long as the spines of the pronotal comb.

The gular comb uearly reaches to the basal angles, and contains 59 teeth on the two sides together. The central gap is as broad as the distance from the tip of the first spine to that of the eighth. Laterally to the comb there is a row of bristles. Close behind the comb six small hairs are placed on the right side of the central groove and four on the other. Farther back the edge of the groove bears six very small hairs on each side, and at and near the basal angles of the head there are three or four short bristles resembling the bristles of the upper surface. The median portion of the hind margin is less prodnced than is nsual in Polyctenids, and also much broader, being nearly twice the width of each lateral portion (12: 7). The hind margin is distinctly rounded between the condyli and the basal angles.

The proboscis consists of four segments, of which the last is the most slender, being bardly wider in the ceutre than at the base. The proportional lengths of the second to fourth segments are : $14,8,1 \%$. The second segment is open at the base on the anterior side, and the third and fourth segments only appear to have a median groove. The small size of the third segment is noteworthy. The bristles of the secoud and third segments are rather long.

The antenuae, which reach to the basal angles of the head, are quite different
from those of other species. The upper sarfaces of the first two segments bear nnmerons short, stont, pointed bristles, which resemble those on the head. The first segment is longer than broad, and the armatnre of the under side consists of a median row of ten or eleven stont spines, and numerons short spines near the anterior (= outer) edge. The second segment tapers towards the apex, and is provided above with a comb which extends from near the base to the apex. Beneath this comb the segment is concave, and along the lower edge of this concavity there are several fairly long bristles. The under surface of this segment bears a longitndinal median row of short obtnse spines, and on the onter side numerons short bristles. The third segment has on the npper side an oblique row of strong bristles. The proportional lengths of the four segments are 33, 35, 14, 14.

The structare of the antenua and of the adjacent lateral area of the upper snrface of the head reuders it evident that the antennae are not laid on the npper side of the head, as in the previous species, bat aloug the elge of it, the edge fitting in between the comb and long bristles of the second segment.

The prothorax is nearly twice as broad as it is long ($63: 35$), the notnm being a transverse oblong with the basal angles more strongly ronuded than the apical ones. The anterior edge is slightly ineurved, while the posterior margin is feebly couvex. The short bristles are very numerons and have the bases somewhat widened, which gives them the appearance of pointed spines, as is also the case with the bristles on the head. The depressed mesial line is bare of bristles, except for the froutal part, and there is also a transverse bare stripe in front of each comb. The presence of two combs on the pronotum is a very striking feature of this species. The spines of both combs are short. Those of the anterior one are pointed, and only differ from the bristles in being stouter at their bases, the lateral spines of the comb resembling the ordinary bristles. This comb does not quite extend to the point where the stigma shines through from beneath, and behind it there is a row of very long bristles.

The elytra, which are more strongly rounded at the sides than at the apex, have no comb, but are densely setose, with the exception of the apical margin and the lasal area. There are a number of bristles near the basal edge, concealed by the overlapping pronotum.

The muderside differs very considerably in the shape of the sterna from that of the Old-World genera Polyctenes and Eoctenes, the species closely approaching the American genus Hesperoctenes. The prosternmm (i.e. the median selerite) is triangular, being twice as broad as it is long, and just reaches the coxile, not extending in between them. The suture which bounds it laterally and runs from the cosal cavity to the anterior margin of the prosternite is very short on account of the great size of the coxal cavities. The bristles are numerous, but the lateral coruers and a small space at each side of the centre are bare of them. Behind the corae in the middle the endoskeleton shines throngh. The mesosternum is evenly incurved anteriorly and likewise evenly excarved posteriorly. The central area of it bears mauy bristles, and there is also a somewhat irregular row near the apical margin. The metasternum is transverse, halfmoon-shaped, and bears a snbapical row of bristles and also some subbasal ones.

The larger portion of the nuder side of the fore femur is without bristles, there being au irregular double row from the onter side to the trochauter and a number of small hairs at and near the inuer margin. On the outer side of the fore femmr
we find three rows of bristles, those in the row placed on the upper surface being directed backward and those of the other two rows forward. There are also some additional bristles near the apes. The fore tibia has a row of ten fairly long bristles at the dorsal side, and near them on the lateral surface a row of about seven ; towards the inuer edge an oblique row of about eight is placed, and at the inner edge there are two long and three short bristles.

The fore tarsus consists of three very short segments, and bears at the apex, besides the pair of unequal claws and a long and some small bristles, two strongly chitinised, short, blunt spines.

The mid femur and particularly the tibia are very densely setose on the outer, apper and lower surfaces, and have comparatively very few bristles on the inner side. The proportional lengths of the segments of the mid leg are: trochanter 37 , fempr 58 , tibia 51 , first tarsal segment 11 , second 14 , third 15 . The bind leg is much less hairy than the mid leg, the femur and tibia hardly bearing any bristles on the outer and inner surfaces. The tibia has three rows at the dorsal edge, which look much more crowded in onr fignre than in the specimen, as they diverge in the insect and are necessarily in a plane in the drawing. The proportional lengths of the segments are: trochanter 42, femur 85, tibia 69, first tarsal segment 12 , second 18 , third 16 . The claws, which narrow bat slightly apically, and are bardly at all curved apart from the base, have blunt tips. Both the mid and hind tarsi bear on the ventral surface of the third segment a single row of four thick, short spines, which are very blnnt with the exception of the first, which is curved and pointed. The row is not placed in the centre of the ventral sarface, but towards the side of the larger claw. The psendo-joint of the second segment is only indicated (Pl. N1V. fig. 13).

The bristles of the abdomen are exceedingly numerous on the proximal segments, less so on the posterior ones, and all the tergites have a bare space towards each side. Tergites vii and viii bear a row of long bristles, the seventh sternite has hardly any bristles except at the apex, but bears two fairly long ones on each side, one behind the other.

In the British Musenm collection:
1 I (adult) from Upper Sheika, British Somaliland, taken off "bats" by R. E. Drake-Brockman on November 25, 1909.

(To be continued.)

[^0]: * Zool. Jahrbüch, Suppl. vii. p. 373. tals. 20 (1901); it. Rcc. Ind. Mus. iii. p. 271 (19091).

[^1]: * Ur. Horvath, to whom we sent our trathings for comparison with the lype of nyeteridis, informs us that they agree with his riecerituen.

